
Optimal phase estimation and square root measurement

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 7017

(http://iopscience.iop.org/0305-4470/34/35/327)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 02/06/2010 at 09:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OFPHYSICSPUBLISHING JOURNAL OF PHYSICSA: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen.34 (2001) 7017–7027 PII: S0305-4470(01)19131-6

Optimal phase estimation and square root
measurement

Masahide Sasaki1, Alberto Carlini1 and Anthony Chefles2

1 Communications Research Laboratory, Ministry of Posts and Telecommunications Koganei,
Tokyo 184-8795, Japan
2 Department of Physical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Herts, UK

E-mail: psasaki@crl.go.jp

Received 15 November 2000
Published 24 August 2001
Online atstacks.iop.org/JPhysA/34/7017

Abstract
We present an optimal strategy having finite outcomes for estimating a single
parameter of the displacement operator on an arbitrary finite-dimensional
system using a finite number of identical samples. Assuming the uniform
a priori distribution for the displacement parameter, an optimal strategy can
be constructed by making thesquare root measurement based on uniformly
distributed sample points. This type of measurement automatically ensures the
global maximality of the figure of merit, that is, the so-called average score
or fidelity. Quantum circuit implementations for the optimal strategies are
provided in the case of a two-dimensional system.

PACS numbers: 03.67.−a, 03.65.Bz, 89.70.+c

1. Introduction

Quantum state estimation deals with how to estimate unknown parameters of a quantum state
as precisely as possible. This problem was studied extensively in the 1970s in the context of
the formalism of the probability operator measure (POM) and of quantum Bayesian inference.
Basic formulations were already established and optimal strategies were found in various
cases. The relevant works are reviewed in [1, 2].

In the 1990s, the same problem was revisited in a new context where one is allowed to
use finite samples of a quantum system to be estimated, while most of earlier works were
concerned with the estimation using a single sample. Massar and Popescu [3] obtained the
optimal strategy for estimating a quantum pure state of a spin-1/2 system, say,|ρ〉, from
N identically prepared samples|ρ〉⊗N . Their strategy is based on the use of an infinite
continuous set of projectors in the Hilbert space of|ρ〉⊗N . For a given unknown quantum
system, the optimal estimation strategy is not unique. As shown in [2], one can always find
an optimal strategy consisting of an infinite continuous set of POMs. On the other hand, for
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a finite-dimensional system there must exist a discrete and finite POM achieving the same
optimal bound as shown by Derkaet al [4]. From the point of view of the physical realization
the latter is preferable, while the former might be a more useful mathematical tool to derive
the maximum attainable average fidelity (which is a commonly used figure of merit for state
estimation). In [4] an algorithm is described for constructing such optimal and finite POMs for
an arbitrary finite-dimensional system in a pure state. Latorreet al [5] then studied the optimal
strategy with a minimum number of outcomes for a spin-1/2 system, and showed explicit
forms of optimal minimal measurements forN = 1–5. Their analysis was extended to the
cases of a mixed state of a spin-1/2 system [6] and of an arbitrary spin system in a pure state
[7]. In [6], the closed form expressions for the maximum average score, the optimal minimal
POM and its number of outcomes were derived by using the symmetric properties of the
totally symmetric subspace supported by a tensor product ofN identical samples. To construct
the optimal minimal strategy explicitly, however, some parameters are to be determined and
remain unsolved for largerN (�6). For higher dimensional systems it becomes more difficult
to find concrete forms for the optimal minimal strategy [7]. As for the maximum average
fidelity the explicit expression for an arbitraryN was obtained in [8]. This bound was derived
by using the fact that quantum optimal state estimation usingN samples can be viewed as the
limiting caseM → ∞ of universal optimal cloning generatingM copies fromN inputs for
which the maximum average fidelity was given by Werner [9]3.

Although substantial progress has been obtained in the quantum state estimation, it is
still a difficult and open problem how to find explicit and physically realizable solutions for
optimal strategies in an algorithmic way, especially in the case of higher dimensional systems
and larger numbers of samples. Moreover, discussions given so far in the literature for ensuring
the optimality of discrete and finite POMs were focused only on the condition for extremality
and not on the full conditions for the existence of a global maximum, which are reviewed in
[1, 2]. In general, seeking all extrema and picking up the point corresponding to the global
maximum is not necessarily a trivial task for complex systems.

In this paper, we focus on a single-parameter estimation of an arbitrary finite-dimensional
system in a pure state and give finite element optimal strategies that can be constructed in a
straightforward way and ensure the global maximality conditions for the POM.

2. Optimal phase estimation

Consider a finite-dimensional system described in a Hilbert spaceH and let{|0〉, |1〉, . . . , |K〉}
be its basis built from the eigenstates of the observableÔ onH, Ô|k〉 = k|k〉. Such a sys-
tem may be, e.g., an optical field produced by quantum scissors [10] (withÔ the photon
number operator) or a spinj system described by a superposition of the eigenstates
{|j,m〉 ,m = −j, . . . , j } (with Ô the spin operator). The problem we consider is the
estimation of a unitary evolution ˆu specified by a displacement parameterθ , that is,
û(θ) = e−iθÔ . We suppose that the initial state of the system is knowna priori and reads

|ψ(0)〉 =
K∑
k=0

ck |k〉 (2.1)

3 The optimal cloning map of [9] may have a connection with the infinite continuous version of the optimal state
estimation strategy.
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(with ck non-zero arbitrary complex coefficients), but we do not have anya priori knowledge
aboutθ . After the evolution, the system will be in a state

|ψ(θ)〉 = û(θ) |ψ(0)〉 =
K∑
k=0

cke
−iθk |k〉 . (2.2)

It is assumed thatN identical samples of the system are available. The combined system is
then described on thetotally symmetric bosonic subspace of H⊗N [4, 9] as

|�(θ)〉 = |ψ(θ)〉⊗N =
∑


n

′
C(
n)e−iθ

∑
k knk |
n〉 (2.3)

where

C(
n) ≡
√
N !

K∏
k=0

c
nk
k√
nk!

(2.4)

∑′

n means the summation over (K + 1)-tuples
n ≡ (n0, . . . , nK) with

∑K
k=0 nk = N , and

|
n〉 (≡|n0, . . . , nK 〉) is the occupation number basis. The dimensionalityDB of this space is
DB = (

N+K
K

). For our present purpose, however, it is enough to consider the smaller subspace

spanned by the eigenstates of the compound operatorÔT ≡ ∑N
i=1 Ô(i), whereÔ(i) is the

observable for theith sample. Let{
n(J )i } be the set of (K + 1)-tuples that satisfy
∑K

k=0 knk = J

and defineAJ ≡
√∑

i |C(
n(J )i )|2. Then the state in equation (2.3) can be rewritten as

|�(θ)〉 =
KN∑
J=0

AJe−iθJ |J 〉 (2.5)

where

|J 〉 = A−1
J

∑
i

C
(

n(J )i

) ∣∣∣n(J )i

〉
ÔT |J 〉 = J |J 〉 . (2.6)

The POM describing the optimal estimation strategy is constructed in theDT = (KN + 1)-
dimensional subspaceHT spanned by the set{|J 〉}.

Such a POM{µ̂m} should maximize the following score:

S̄(N) =
∑
m

1

2π

∫ 2π

0
dθ Tr (µ̂m�̂(θ))|〈ψm|ψ(θ)〉|2 (2.7)

where�̂(θ) = |�(θ)〉 〈ψ(θ)| and|ψm〉 is a guessed state according to themth outcome of the
measurement. Optimality can be discussed along with the conditions for quantum Bayesian
optimization [1, 2]. Let us introduce thescore operators

Ŵm ≡ 1

2π

∫ 2π

0
dθ �̂(θ)|〈ψm|ψ(θ)〉|2. (2.8)

They include all thea priori information. Then the necessary and sufficient conditions such
that a certain set{µ̂m} globally maximizes the average score for a fixed set of{|ψm〉} are
expressed as [1, 2]

(i) �̂ ≡ ∑
m Ŵmµ̂m is Hermitian and(�̂ − Ŵm)µ̂m = 0 ∀m

(ii) �̂ − Ŵm � 0 ∀m
(2.9)

where�̂ is called the Lagrange operator, and the average score (2.7) can then be rewritten as

S̄(N) = Tr �̂. (2.10)
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The optimal estimation strategy can be constructed in the following way. First takeM states
corresponding to uniformly distributed sample points inθ ∈ |0,2π); that is,

|ψm〉 =
K∑
k=0

cke−i 2πm
M k |k〉 (m = 0, . . . ,M − 1) (2.11)

and let us denote itsN tensor product states as|�m〉 = |ψm〉⊗N . Then consider the state vector

|µm〉 ≡ �̂− 1
2 |�m〉 �̂ ≡

∑
m

|�m〉 〈�m|. (2.12)

The set{µ̂m ≡ |µm〉 〈µm|} is easily seen to be a set of non-negative Hermitian operators
satisfying the resolution of the identity onHT , and thus a POM. This POM is often called the
square root measurement [11–13]. If we takeM � KN + 1 sample points,{µ̂m} also works
as the optimal estimation strategy. Under the conditionM � KN + 1 we have, in fact, that
(cf. equation (2.5) withθ = 2πm/M)

�̂ = M

KN∑
J=0

A2
J |J 〉 〈J | (2.13)

because

M−1∑
m=0

ei 2πm
M

n = Mδn,0 for −KN � n � KN. (2.14)

Therefore, from equation (2.12) we get

|µm〉 = 1√
M

KN∑
J=0

e−i 2πm
M J |J 〉 . (2.15)

To prove optimality, let us first rewrite the score function as (see equations (2.2) and (2.11))

|〈ψm|ψ(θ)〉|2 = d0 +
K∑

L=1

dL

(
ei( 2πm

M
−θ)L + e−i( 2πm

M
−θ)L

)
(2.16)

where

dL =
K−L∑
k=0

|ck+Lck|2. (2.17)

By substituting equation (2.16) into equation (2.8), we obtain

Ŵm = d0

KN∑
J=0

A2
J |J 〉〈J | +

K∑
L=1

dL

KN−L∑
J=0

AJAJ+L

×
(
ei 2πm

M
L|J 〉〈J + L| + e−i 2πm

M
L|J + L〉〈J |

)
. (2.18)

We then have

�̂ =
M−1∑
m=0

Ŵmµ̂m = d0

KN∑
J=0

A2
J |J 〉〈J | +

K∑
L=1

dL

KN−L∑
J=0

AJAJ+L (|J 〉〈J | + |J + L〉〈J + L|)

(2.19)
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where the orthogonality relation equation (2.14) was used under the conditionM � KN + 1.
The operator̂� − Ŵm is now

�̂ − Ŵm =
K∑

L=1

dL

KN−L∑
J=0

AJAJ+L

[
|J 〉〈J | + |J + L〉〈J + L|

−
(
ei 2πm

M
L|J 〉〈J + L| + e−i 2πm

M
L|J + L〉〈J |

) ]
. (2.20)

Now look at each operator enclosed by [. . .] in equation (2.20). This 2× 2 matrix has the
eigenvalues 0 and2 and is non-negative. So is the sum of them. Since the coefficientsdL and
AJ in equation (2.20) are also positive, the second condition (ii) of equation (2.9) is proved.
The first condition (i) can be easily checked by direct calculation. The maximum average
score is then given by

S̄MAX (N) = d0

KN∑
J=0

A2
J + 2

K∑
L=1

dL

KN−L∑
J=0

AJAJ +L. (2.21)

This maximum is independent of the number of sample pointsM; that is, forM � KN + 1
the attainable average score is saturated. In fact, in the limit ofM → ∞ we can construct the
infinite continuous POM

d"̂(ϕ) ≡ |µ(ϕ)〉〈µ(ϕ)|dϕ/2π
∫ 2π

0
d"̂(ϕ) = Î (2.22)

where

|µ(ϕ)〉 ≡
(

1

2π

∫ 2π

0
dφ �̂(φ)

)− 1
2

|�(ϕ)〉 =
KN∑
J=0

e−iϕJ |J 〉 (2.23)

and this attains the same maximum as equation (2.21). Thus it is proved that the measurement
state vector (2.12) (also (2.15)) provides the optimal estimation strategy. For the minimum
number of sample pointsM = KN + 1, {|µm〉} is an orthonormal set, that is, a von Neumann
measurement.

Here we mention other strategies{µ̂⊥
m} which extremize the average score (2.7) (for the

sameŴm as in equation (2.8)), that is, satisfy the first condition (i) of equation (2.9), but
not necessarily the second condition (ii). Consider, for example, the states orthogonal to the
N-tensor-product sample states|�m〉 , that is, the states

|�⊥
m〉 =

KN∑
J=0

(
KN

J

)
A−1
J (−1)Je−i 2πm

M J |J 〉 . (2.24)

The square root measurement for discriminating{|�⊥
m〉} is given as

|µ⊥
m〉 ≡

(
M−1∑
m=0

|�⊥
m 〉〈�⊥

m |
)− 1

2

|�⊥
m 〉 = 1√

M

KN∑
J=0

(−1)Je−i 2πm
M

J |J 〉 . (2.25)

The Lagrange operator for this measurement is

�̂⊥ =
M−1∑
m=0

Ŵmµ̂
⊥
m = d0

KN∑
J=0

A2
J |J 〉〈J |

+
K∑

L=1

dL

KN−L∑
J=0

AJAJ+L(−1)L(|J 〉〈J | + |J + L〉〈J + L|) (2.26)
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and we have that

�̂⊥ − Ŵm =
K∑

L=1

dL

KN−L∑
J=0

AJAJ +L

[
(−1)L(|J 〉〈J | + |J + L〉〈J + L|)

−
(
ei 2πm

M L|J 〉〈J + L| + e−i 2πm
M L|J + L〉〈J |

)]
(2.27)

which is easily seen to satisfy(
�̂⊥ − Ŵm

) ∣∣∣µ⊥
m

〉
= 0. (2.28)

Thus the POM{µ̂⊥
m ≡ |µ⊥

m〉〈µ⊥
m|} is an extremal solution for the average score (2.7). However,

for example, in the case of a two-dimensional system (K = 1 in equation (2.1)), equation (2.27)
reduces to

�̂⊥ − Ŵm = −d1

N−1∑
J=0

AJAJ+1

[
|J 〉〈J | + |J + 1〉〈J + 1|

+ ei 2πm
M |J 〉〈J + 1| + e−i 2πm

M |J + 1〉〈J |
]

(2.29)

which is clearly a non-positive definite operator; that is,�̂⊥ −Ŵm � 0. In contrast to equation
(2.9), this means that{µ̂⊥

m} attains aglobal minimum of the average score. In the general case
of K > 1, it is not necessarily the case that�̂⊥ − Ŵm is positive or negative definite. Thus, in
general, the set{µ̂⊥

m} may represent strategies that attain eitherlocal maxima or minima.

3. Quantum circuit for the optimal strategy

Let us consider physical implementations of the optimal estimation strategy represented by
equation (2.15). This is a collective measurement on a finite sample system. This sort of
measurement can, in principle, be realized by a quantum circuit acting on the combined
system and a separable measurement on each sample system. From this point of view, the
main problem is a synthesis of an appropriate quantum circuit. When we take the minimum
number of outputsM = KN + 1, the measurement basis{|µm〉} is orthonormal, and equation
(2.15) is the discrete Fourier transform in the subspaceHT. The discrete Fourier transform
is a fundamental tool in quantum computation. The corresponding circuit working on qubit
systems is already known (see, e.g., [14]). Therefore in the case of a two-dimensional system
(that is, K = 1 in equation (2.2)), we may apply this result to synthesizing the optimal
estimation strategy.

Let us start with the simplest two-dimensional system withN = 2. The state to be
measured is

|ψ(θ)〉⊗2 = A0 |0〉T + A1e−iθ |1〉T + A2e−i2θ |2〉T (3.1)

whereA0 = c2
0, A1 = √

2c0c1, A2 = c2
1, and

|0〉T = |00〉 (3.2a)

|1〉T = 1√
2
(|01〉 + |10〉) (3.2b)

|2〉T = |11〉 (3.2c)

assuming that the coefficientsci are real for eliminating inessential phase factors. Here we
have used the subscript T for denoting the basis|J 〉 of the (KN + 1)-dimensional subspace
HT, and the basis states|00〉, |01〉, |10〉 and|11〉 span the spaceH⊗2. The optimal strategy
with the minimal outputs is represented as

|µm〉 = 1√
3

(
|0〉T + e−i 2πm

3 |1〉T + e−i 4πm
3 |2〉T

)
(m = 0,1,2). (3.3)
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This expression is, however, rather inconvenient for directly applying the discrete Fourier
transform quantum network,which is usually defined in a 2n-dimensional space corresponding
to n qubit systems. Therefore, it seems better to consider the measurement circuit in a four-
dimensional spaceH⊗2 spanned by the basis{|00〉, |01〉, |10〉, |11〉}. In fact we also have the
four-output optimal, nonminimal (M = 4) strategy inHT as

|µm〉 = 1√
4

(
|0〉T + e−i 2πm

4 |1〉T + e−i 4πm
4 |2〉T

)
(m = 0,1,2,3) (3.4)

and this can be extended to a von Neumann measurement inH⊗2. It is thus helpful to transform
the state of the input samples by the unitary operatorT̂ (2) defined by the circuit shown in
figure 1 such that

T̂ (2) |ψ(θ)〉⊗2 = A0 |00〉 + A1e−iθ |01〉 + A2e−i2θ |10〉 . (3.5)

We may then apply the measurement

|µm〉 = 1√
4

(
|00〉 + e−i 2πm

4 |01〉 + e−i 4πm
4 |10〉

)
(m = 0,1,2,3) (3.6)

or its Naimark extension inH⊗2

|"m〉 = 1√
4

(
|00〉 + e−i 2πm

4 |01〉 + e−i 4πm
4 |10〉 + e−i 6πm

4 |11〉
)

(m = 0,1,2,3) (3.7)

which, using the discrete Fourier transform̂UDFT shown by the circuit of figure 2, can be
explicitly written as

|"0〉 = Û
†
DFT |00〉 (3.8a)

|"1〉 = Û
†
DFT |10〉 (3.8b)

|"2〉 = Û
†
DFT |01〉 (3.8c)

|"3〉 = Û
†
DFT |11〉 . (3.8d)

T (2) =
H

=UDFT

R(  )2

H

H

π

Figure 1. The circuit for the basis transformation
from {|0〉T, |1〉T, |2〉T} to {|00〉, |01〉, |10〉}. Ĥ is the
Hadamard transformation.

Figure 2. The circuit for the discrete Fourier transform
on two qubit systems. The two bit gate R̂(φ) performs
the transformation |x〉 |y〉 �→ eixyφ |x〉 |y〉.

Thus the optimal phase estimation can be realized by first performing the unitary transformation
ÛDFTT̂

(2) on the input state |ψ(θ)〉⊗2, then measuring the transformed state in the basis
{|00〉, |10〉, |01〉, |11〉} (which is a separable measurement), and finally deciding the phase as
θ = 0, π

2 , π or 3π
2 , according to whether the outcome is |00〉, |10〉, |01〉 or |11〉, respectively.

This is summarized in figure 3.

T (2) UDFT } 2

00
01

11
10

3
2

0
)

)

(

(

θ

θ

ψ

ψ
π
π

π

Figure 3. The circuit structure for the optimal estimation strategy in the case of N=2.



7024 M Sasaki et al

Similarly, in the case of N = 3, the input state is represented as

|ψ(θ)〉⊗3 = A0|0̄〉T + A1e−iθ |1̄〉T + A2e−i2θ |2̄〉T + A3e−i3θ |3̄〉T (3.9)

where

|0̄〉T = |000〉 (3.10a)

|1̄〉T = 1√
3
(|001〉 + |010〉 + |100〉) (3.10b)

|2̄〉T = 1√
3
(|110〉 + |101〉 + |011〉) (3.10c)

|3̄〉T = |111〉. (3.10d)

Let T̂ (3) be the unitary operator which converts the basis states {|0〉T, |1〉T, |2〉T, |3〉T} into
|0〉 ⊗ {|00〉, |01〉, |10〉, |11〉}, respectively; that is,

T̂ (3) |ψ(θ)〉⊗3 = |0〉 ⊗
(
A0 |00〉 + A1e−iθ |01〉 + A2e−i2θ |10〉 + A3e−i3θ |11〉

)
. (3.11)

The estimation strategy can then be constructed again in the four-dimensional space H⊗2,
where the minimal optimal measurement is actually given by equation (3.7) and can be realized
just as in the previous case. The unitary operator T̂ (3) can be effected by the circuit shown in
figure 4 which consists of three main blocks. In the first block, the operator T̂ (2) acts on the
first two qubits of the HT basis states, which gives

|0̄〉T �→ |000〉 (3.12a)

|1̄〉T �→ 1√
3
|001〉 +

√
2

3
|010〉 (3.12b)

|2̄〉T �→ 1√
3
|100〉 +

√
2

3
|011〉 (3.12c)

|3̄〉T �→ |101〉. (3.12d)

The second block transforms the state |100〉 into the state |110〉 and the last block Ŝ(3)(v̂1),
which includes the conditional rotation on one qubit

v̂1 =

 1√

3

√
2
3

−
√

2
3

1√
3


 (3.13)

leads to the final basis states |0〉 ⊗ {|00〉, |01〉, |10〉, |11〉} as required.

=T (3)

S (3)(v )1 = v1

v1

T (2)

S (3)(v )1

Figure 4. The circuit which converts the basis states {|0̄〉T, |1̄〉T, |2̄〉T, |3̄〉T} into |0〉 ⊗
{|00〉, |01〉, |10〉, |11〉}.
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Finally we mention the case of N = 4. Let us observe that the HT basis can be written as

| ¯̄0〉T = |000〉 ⊗ |0〉 (3.14a)

| ¯̄1〉T = 1

2
[(|001〉 + |010〉 + |100〉) ⊗ |0〉 + |000〉 ⊗ |1〉] (3.14b)

| ¯̄2〉T = 1√
6

[(|001〉 + |010〉 + |100〉) ⊗ |1〉 + (|110〉 + |101〉 + |011〉) ⊗ |0〉] (3.14c)

| ¯̄3〉T = 1

2
[(|110〉 + |101〉 + |011〉) ⊗ |1〉 + |111〉 ⊗ |0〉] (3.14d)

| ¯̄4〉T = |111〉 ⊗ |1〉. (3.14e)

The first three qubits can be transformed into |000〉, |001〉, |010〉 or |011〉 by applying T̂ (3).
Thus the first qubit of all the basis states becomes |0〉, and can be factorized out. By further
applying on the remaining three qubits a CC-NOT gate, the operator Ŝ(3)(v̂2) with

v̂2 =
(

1
2

√
3

2

−
√

3
2

1
2

)
(3.15)

and the operator Ŵ (3) as shown in figure 5, the basis states {| ¯̄0〉T, . . . , | ¯̄4〉T} are finally
transformed into |0〉 ⊗ {|000〉, |001〉, |010〉, |011〉, |100〉}, respectively.

=T (4) T (3)

S (3)(v )2 W (3)

=W (3)
H

Figure 5. The circuit which transforms the basis states {| ¯̄0〉T, . . . , | ¯̄4〉T} into |0〉 ⊗
{|000〉, |001〉, |010〉, |011〉, |100〉}, respectively.

Let T̂ (4) be this basis transformation represented by the circuit of figure 5. After transforming
the input state by T̂ (4), it is then sufficient to perform the measurement on the last three
qubits. Let {|L〉3 ;L = 0, 1, . . . , 7} be the three-qubit basis {|000〉, |001〉, . . . , |111〉}. Then
the minimal optimal measurement is given as

|µm〉 = 1√
5

4∑
L=0

e−i 2πm
5 L |L〉3 (m = 0, 1, 2, 3, 4). (3.16)

However, for applying the discrete Fourier transform network, it is convenient to take the other
optimal strategy consisting of the overcomplete states

|µm〉 = 1√
8

4∑
L=0

e−i 2πm
8 L |L〉3 (m = 0, 1, . . . , 7). (3.17)
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These can be orthogonalized in the eight-dimensional space H⊗3 as

|"m〉 = 1√
8

7∑
L=0

e−i 2πm
8 L |L〉3 (m = 0, 1, . . . , 7). (3.18)

This is just the discrete Fourier transform in H⊗3, and can be written in the form
|"m〉 = Û

†
DFT |m〉3. The circuit corresponding to ÛDFT is found in [14]. Therefore the optimal

estimation is realized by applying the unitary transform (Î ⊗ ÛDFT) · T̂ (4)
on the input state

|ψ(θ)〉⊗4 and then by measuring the last three qubits of the transformed state in the basis
{|L〉3}. According to the outcome, we decide the phase to be exp(−i2πL/8).

The case of larger N can be treated in a similar way by applying the circuits used in the
case of lower N inductively. In the general case of higher dimensional systems, one should
first develop basic tools for constructing quantum circuits (for some recent progress see, e.g.,
[15]), and at present practical circuit synthesizations remain an open problem.

4. Concluding remarks

We have shown how to construct the optimal strategies for estimating a displacement parameter
of an arbitrary finite-dimensional system in a pure state. These are based on the square root
measurement for discriminating the states corresponding to the uniformly distributed sample
points of the parameter. We have assumed that the a priori probability distribution of the
parameter is uniform. When the a priori distribution is not uniform, or the system to be
estimated is in a mixed state, the strategy based on the square root measurement is not in
general optimal.

Within the assumption of a uniform a priori distribution and the purity of the system to
be estimated, it is a remaining problem whether our method applies to the estimation of two
or more parameters. The simplest case would be the estimation of a two-state system using
finite identical samples |ψ(θ, φ)〉⊗N . As for the infinite continuous POM, we can show that
the square root measurement

d"̂(θ, φ) ≡ |µ(θ, φ)〉〈µ(θ, φ)|dφ dθ sinθ

2π

∫ 2π

0

∫ π

0
d"̂(θ, φ) = Î (4.1)

where

|µ(θ, φ)〉 ≡
[

1

4π

∫ 2π

0
dφ′

∫ π

0
dθ ′sin θ ′ (|ψ(θ, φ)〉 〈ψ(θ, φ)|)⊗N

]− 1
2

|ψ(θ, φ)〉⊗N (4.2)

provides the optimal strategy. Whether its discrete and finite version should exist and be built
from the uniformly distributed sample points of (θ, φ) is still an open question at present.
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